711 research outputs found

    On non-normality and classification of amplification mechanisms in stability and resolvent analysis

    Get PDF
    We seek to quantify non-normality of the most amplified resolvent modes and predict their features based on the characteristics of the base or mean velocity profile. A 2-by-2 model linear Navier-Stokes (LNS) operator illustrates how non-normality from mean shear distributes perturbation energy in different velocity components of the forcing and response modes. The inverse of their inner product, which is unity for a purely normal mechanism, is proposed as a measure to quantify non-normality. In flows where there is downstream spatial dependence of the base/mean, mean flow advection separates the spatial support of forcing and response modes which impacts the inner product. Success of mean stability analysis depends on the normality of amplification. If the amplification is normal, the resolvent operator written in its dyadic representation reveals that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes. If the amplification is non-normal, then resolvent analysis is required to understand the origin of observed flow structures. Eigenspectra and pseudospectra are used to characterize these phenomena. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with normal mechanisms and quantification of non-normality using the inverse inner product of the leading forcing and response modes agrees well with the product of the resolvent norm and distance between the imaginary axis and least stable eigenvalue. In turbulent channel flow, structures result from both normal and non-normal mechanisms. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how non-normality is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures

    Insertion-Removal Tool for Low-Profile Modular CWDM Micro-Optics Assembly

    Get PDF
    CWDM micro-optics are small and can be easily contaminated. Disclosed is an insertion/removal tool with self-locating features to engage with the connector for a low-profile CWDM micro-optics assembly which is to be installed onto, or removed from, a mating socket on a substrate

    Interaction of forced Orr-Sommerfeld and Squire modes in a low-order representation of turbulent channel flow

    Get PDF
    A resolvent-based reduced-order representation is used to capture time-averaged second-order statistics in turbulent channel flow. The recently proposed decomposition of the resolvent operator into two distinct families related to the Orr-Sommerfeld and Squire operators [Rosenberg and McKeon, Efficient representation of exact coherent states of the Navier-Stokes equations using resolvent analysis, Fluid Dyn. Res. 51, 011401 (2019)] results in dramatic improvement in the ability to match all components of the energy spectra and the uv cospectrum. The success of the new representation relies on the ability of the Squire modes to compete with the vorticity generated by Orr-Sommerfeld modes, which is demonstrated by decomposing the statistics into contributions from each family. It is then shown that this competition can be used to infer a phase relationship between the two sets of modes. Additionally, the relative Reynolds number scalings for the two families of resolvent weights are derived for the universal classes of resolvent modes presented by Moarref et al. [Moarref, Sharma, Tropp, and McKeon, Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels, J. Fluid Mech. 734, 275 (2013)]. These developments can be viewed as a starting point for further modeling efforts to quantify nonlinear interactions in wall-bounded turbulence
    corecore